Approaches to active learning; two medical schools make a start

Michael Parmely, Ph.D

Dept. of Microbiology, Molecular Genetics & Immunology Kansas University School of Medicine

VTC Virginia Tech Carilion School of Medicine and Research Institute

Susan Ely, Ph.D.

Department of Basic Science Virginia Tech Carilion School of Medicine

Approaches to Active Learning in a Pre-Clinical Curriculum: A KU Experience

IAMSE Webinar 2014

Michael Parmely, Ph.D. Department of Microbiology, Molecular Genetics and Immunology KU School of Medicine

Intention of this Session

- Describe the context for a model of active learning at Kansas
- Discuss primary goals of encouraging critical thinking, independent learning and clinical reasoning among MS1 students
- Discuss some variations on active learning strategies in a large classroom
- Describe some means of assessment

KU SOM Learning Environment

- Sole state medical school with class size of > 200 students
- 3-site campus connected by ITV
- Modular preclinical curriculum with first Fall term devoted to underlying fundamentals
- 4-week Inflammation and Immunity module in Oct-Nov

Foundations of Medicine

Genetics and Neoplasia Inflammation and Immunity

KU SOM Graduation Competencies

- Patient Care: <u>assessment</u>, <u>diagnosis</u>, <u>management</u>, prevention/promotion, skills
- Medical Knowledge: <u>access</u>, <u>provide evidence</u>, <u>appraise</u>
- Practice-based learning/improvement: <u>refine</u>, <u>feedback</u>, reflect, <u>set personal objectives</u>
- **Professionalism**: attitudes, behaviors, sensitivity, responsiveness, limitation, ethics
- Systems-based practice: <u>team</u>, health systems, error, solutions for community

What can be done in the first year of medical school?

- Developing these skills does not require a vast fund of knowledge; it requires inquisitiveness, patience and a learning framework.
- Independent engagement of students in active learning assignments facilitates skills development.

Assessment?

- How well do students manage complicated clinical case material?
- Where do they go for authoritative information?
- How do they develop an understanding of key diagnostic characteristics?
- How well do they apply mechanisms of disease to new clinical scenarios?
- Can they communicate what they have learned?

9 Steps in the Teaching/Learning Process

- 1. Define background study expectations
- 2. Provide an independent learning exercise (clinical case).
- 3. State pre-class student expectations: identify individual or team learning issues.
- 4. Assess student readiness to participate in class. Provide feedback.
- 5. State the specific case and session objectives.

9 Steps in the Teaching/Learning Process

- 6. Present the case in a large group setting.
- 7. Illustrate the desired skill.
 - Identifying learning issues and rich resources
 - Developing a problem list
 - Managing large sets of case information
 - Developing a concept map of pathogenesis
- 8. Provide a take-home exercise, typically another case.
- 9. Written post-class reports with assessment and feedback

Example: Transfusion Reaction

- 1. Reading and lecture review
- 2. Clinical case on transfusion reaction
- 3. Submit a set of 5 learning issues/objectives
- 4. Readiness: ABO antigens/antibodies and universal donors and recipients (web-clickers)
- 5. Objectives: Recognizing the signs and symptoms of an adverse event.
 - Clinical response
 - $_{\odot}$ Understanding the genetics of ABO

Example: Transfusion Reaction

- 6. Present case in typical clinical format: CC, HPI, PMH, etc.
- 7. Skill: Linking presenting signs/symptoms to immune mechanisms of RBC destruction.
 - Nearest neighbor discussion about blood types
 - $_{\odot}$ Constructing a concept map of pathogenesis
- 8. Take-home case of TRALI
- 9. Report: How do these mechanisms relate to solid organ rejection mechanisms?

Variations in the Process

- Stage of the learner: independence?
- Sequencing of skills development?
- Teaching/learning setting?
- Resistance to class attendance?
- Competition with podcasting?
- Individual versus group assignments?
- Time burden of assessment?
- Opportunities for narrative assessment

Constructing a concept map of disease pathogenesis

Connect the following terms or processes in a concept map to create a picture of disease pathogenesis.

- Foreign RBCs (foreign ABO)
- Anti-ABO antibodies
- Intravascular lysis of RBCs
- Released cellular debris
- Fever, pain, tachycardia and hypotension

Review of this Session

- Context at KU for this model of active learning
- Primary goals: critical thinking, independent learning and clinical reasoning
- Assessment
- Variations on active learning strategies in a large classroom

Expanding student-directed learning at Virginia Tech Carilion School of Medicine

IAMSE Webinar 16 January 2014

Susan Ely, Ph.D.

Department of Basic Science Virginia Tech Carilion School of Medicine

Expanding student-directed learning at Virginia Tech Carilion School of Medicine

Session objectives:

Outline the VTCSOM MS1/MS2 learning environment

Describe the 2013 expansion of student-directed learning

Highlight surprises, successes & challenges

Virginia Tech Carilion School of Medicine

- New school Charter class graduates May 2014
- Very small 42 students per class
- 48% Basic Science curriculum = PCL/PBL
 Patient-centered Learning/Problem-based Learning for MS1/MS2
- Pass/fail system; end-of block assessment (informal, formative assessments during blocks)
- Curriculum is organ system-based;
 MS1 year = normal; MS2 year = pathological

VTCSOM MS1/MS2 learning environment

- Four Value Domains: Basic Science Clinical Science Research Interprofessionalism
- Basic Science curriculum = lecture 7 hours/week lab/workshop 4 hours/week PCL/PBL 10 hours/week

As of 2013 MS2 🗲 enhanced student-directed learning

Patient-centered Learning (PCL)/PBL at VTCSOM

- 7 students + 1 faculty facilitator/group
- 1 clinical case/week
- **Students identify learning objectives;**

each student presents to group twice weekly

Mon. 2 hours Wed. 3 hours Fri. 4 hours (1h with patient)

2013 Expansion of student-directed learning MS2 year only

(Block V – Infectious disease, Pathology intro., Dermatologic disease, Genetic disease)

Voluntary faculty participation (2013):

traditional lecture OR asynchronous content delivery

3/15 faculty members chose asynchronous content delivery

Method of asynchronous content delivery 2013

Pre-recorded voice-over Powerpoint slides

- Mycology
- Parasitology
- Autoimmune disease
- Skin & Soft tissue Infections

Plan to add video pre-recorded sessions in 2014

In-class synthesis sessions – focus on clinical correlations Q&A Small-group problem-solving

In 2013, for some lecture topics, students were provided with an additional choice for content consumption: textbook assignments pre-recorded content in-class synthesis sessions

Results:

No change in attendance for synthesis sessions vs. lectures

No change in end-of-block exam results vs. 2012

Student response varied widely

POSITIVE student responses

End-of-block evaluation: Asynchronous content delivery rated slightly higher than traditional content delivery

Availability of pre-recorded content was well-received.

Some students found this an improvement over lectures.

NEGATIVE student responses

Quality of pre-recorded content was unsatisfactory to some.

Time needed for pre-recorded content was problematic.

Uncertainty regarding synthesis sessions was unsettling.

Challenges for 2014 and beyond...

- Increasing faculty participation
 - convincing reluctant colleagues
 - providing suitable faculty development opportunities

Improving quality of pre-recorded content

Providing excellent in-class synthesis sessions

Presenting expanded choices for student-directed learning *without* expanding required study time

In summary... this session described :

- The VTCSOM Basic Science PCL/PBL-intensive MS1/MS2 learning environment
- initial attempts at providing pre-recorded curricular content & in-class synthesis sessions in MS2
- results & challenges for the future

Thank you!

Questions?

ΚIJ

EDICINE

OF

