

Early History

- SUNY Buffalo 1950s
 - George Miller, Jason, McGuire, Abrahamson
- Jason → Michigan State U - Shulman, Elstein, Downing, Bridgeham
- Abrahamson → U Southern California - Barrows, Nyquist
- McGuire, Miller \rightarrow U Illinois Chicago Gordon Page, Bordage, Downing

Copyright IAMSE 2016

The 1970's and PBL

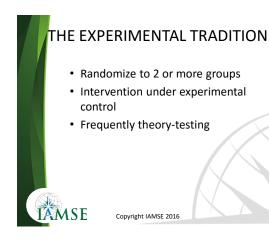
- Problem Based Learning begins at
 - PED (now PERD) opens 1971
- Maastricht adopts PBL 1973
 - Large education group Schmidt, van der

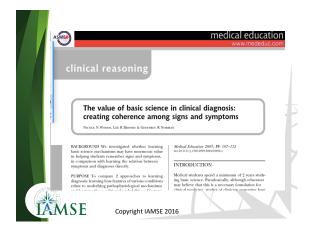
• Other schools (U New Mexico; Linkoping)

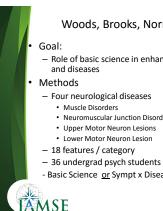
The Testing Agencies

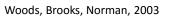
- Testing Boards and Evaluation methodologies
- American Board Internal Medicine - Webster, Swanson, Norcini
- National Board of Medical Examiners - Swanson, Case, LaDuca,
- Medical Council of Canada
 - Bordage, Page, Reznick, Wood, Blackmore

SE Copyright IAMSE 2016

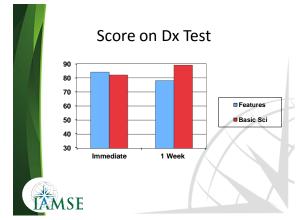


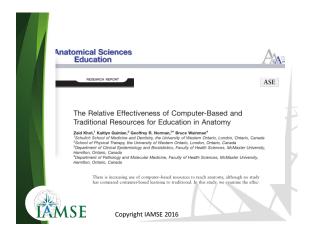

The Three Waves

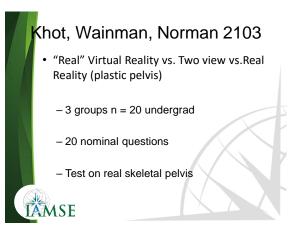

(Norman GR. Fifty years of medical education research. Med Educ 2011; 45: 785-91) Wave 1: The misfits (1960-1980) Folks with unrelated PhDs who muddled through (Norman, McGuire, Irby, Page, etc). Wave 2: The specialists (1970 - now) Folks with PhDs in relevant area (psychology, sociology, psychometrics (Norcini, Eva, Regehr, van der Vleuten) Wave 3: The med educ specialists Folks, usually health professionals, with graduate degree in med educ.

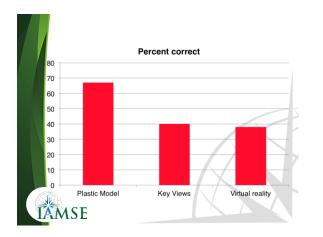

Copyright IAMSE 2016

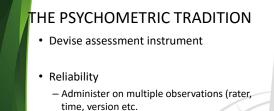
ASE










- Role of basic science in enhancing coherence of symptoms
 - Neuromuscular Junction Disorders
 - Upper Motor Neuron Lesions
- Basic Science or Sympt x Disease probability

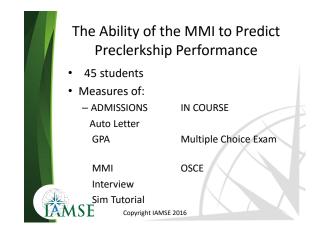
• Validity

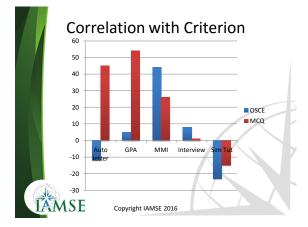
 Correlate with external variable (other measure, demographic, personal characteristics
 Copyright IAMSE 2016

Academ Codate Report of Prevent Section M Section M Prevent Section M Section Sectio

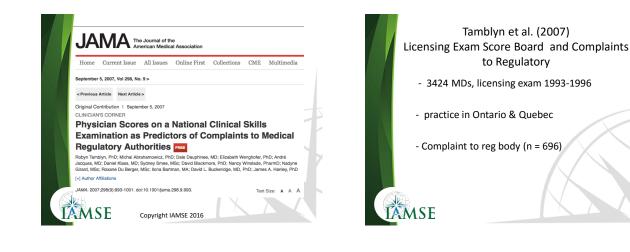
Academic Medicine: October 2004 - Volume 79 - Issue 10 - pp S40-S42 Papers: Correlates of Clinical Performance

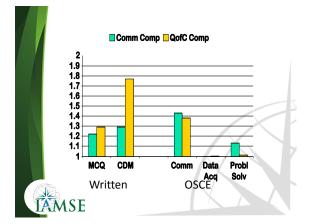
The Ability of the Multiple Mini-Interview to Predict Preclerkship Performance in Medical School

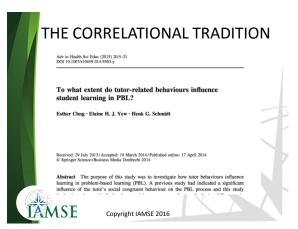

Eva, Kevin W.; Reiter, Harold I.; Rosenfeld, Jack; Norman, Ge Section Editor(s): Perkowski, Linda PhD

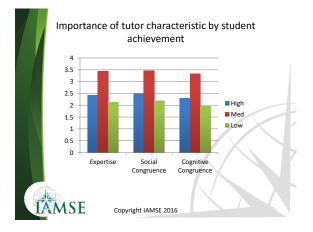

Abstract

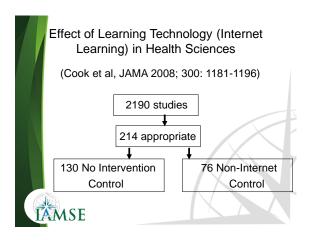
Problem Estatement and Background. One of the present challingen contrivuing Is free indicate advances in the development of the advances and the provides said information partializing to the noncomparitive qualities candidate posses. An innovative protocol, the Multipe Multi-Interven's, has an estimations protocol to be Saidle, acceptate, and related. This article presents a first assessment of the tochnique's widdly. Multiper advances are apprecisable to program at Advancer University Performance on this tool and on the traditional protocol was compared to performance on preletivity available meetings.

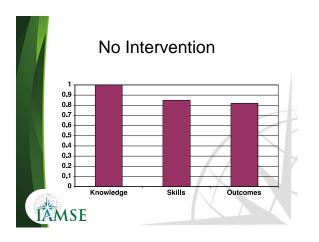

suits. The MMI was the best predictor of objective structured cirilocial examination informance and grade point average was the most consistent predictor of portomance on ultiple-choice question examinations of medical knowledge. Inclusions. While further variatify testing is required, the MMI appears better able to predict extensible prediction relative to traditional tools designed to assess the noncognitive statement of the statement of

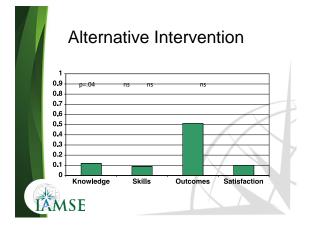

Copyright IAMSE 2016

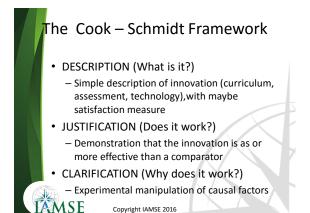


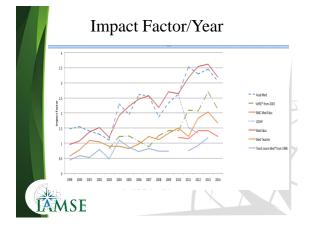












	Rank	Categories	Overall count	
	1	Issues in student assessment	1559	
	2	Clinical skills training	1303	
	3	Clinical clerkships	1218	
	4	Problem-based learning	731	
	5	Community-based training	594	
	6	Clinical competence assessment	529	
	7	Teaching the clinical sciences	483	
	8	Communication skills training	368	
	9	Student characteristics	366	
	10	Objective structured clinical examination	347	
	11	Teaching the basic sciences	299	
	12	Nature of clinical reasoning	248	
	13	Professionalism in medicine	236	
	14	Costs of medical education	236	
	15	Faculty development	189	
	16	Use of simulations	160	
1000	17	Admission to medical school	107	
(SNB)	18	Medical licensing examination	88	
TAMACE	19	Knowledge retention	84	
	20	Specialty choice	68	

Research Journals

Medical Education	ASME(UK) 12/yr				
Academic Medicine	AAMC(US) 12/yr				
Adv. Health Science E	5/year					
Medical Teacher AME	12/yr					
Teach Learn Med	US	4/yr				
***		$\langle X, Y \rangle$				
Anatomical Science Education						
Medical Science Educator						
Journal of Postgraduate Education						
AMSE						

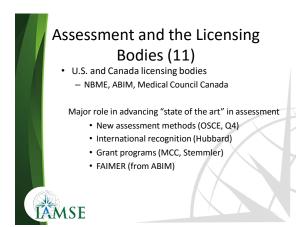
Achievements from 30 Years of Medical Education Research

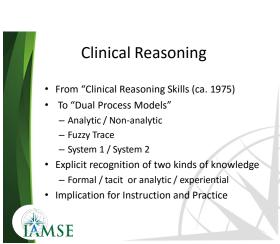
11

8

5

4


4


4

- Survey of AHSE editors (n = 15)
- 1) Assessment
- 2) Clinical Reasoning
- 3) Content specificity
- 4) Simulation5) Science of Teaching and Learning

ЛSE

Progress as a Discipline

٨SE

Content Specificity

- Whatever you measure / however you measure it
 - The correlation across observations (problems, samples) is 0.1 to 0.3
- Assessment methods like OSCE, MMI, MCQ
- Decline of "skills" (Problem-solving, critical thinking, self-assessment)

Simulation

- Recognition of potential but essential role of simulation in education
- From focus on "Fidelity" to critical task analysis
- Insufficient integration at curriculum level

MSE

١SE

Science of Teaching and Learning

- Fundamental understanding of the nature of human learning

 Based on STWM – LTAM
- Implication (unfulfilled?) for instruction


The Evolution and Maturation of the Discipline of MER Increased sophistication of the Journals Low acceptance rate Increased impact factor Greater theory focus Increased numbers of participants PhD with expertise in social / behavioral science MD with advanced training Increased educational opportunities

FAIMER
 Maastricht, UIC, Dundee, Wilson, Erasmus

CHALLENGES FOR THE FUTURE

- Can Competency Based / Outcome Based Education deliver?
- How can we integrate simulation into the curriculum at UGME and PGME?
- Broadening admissions to assess "noncognitive" factors

- One (?) demonstration, structured on basic surgical skills (Reznick)
- Some evidence that assessment, using CANMeds roles, has problems
- Massive issues in assessing EPAs – Norman, Bordage, Norcini, 2013

Integrating simulation into the curriculum

- With changes in health care, need to use simulation
- To date, models are expensive, complicated
- Need to create simulations that are based on careful analysis of critical behaviours

 E.g. IV insertion
- Need to create curricula integrating simulator
 - E.g. Mixedpractice for diagnosis

MSE

Broadening admissions process

- Good assessment of cognitive achievement
 MCAT 2105, GAMSAT, etc.
- Some assessment of "non-academic factors" – MMI, CASPer.
- Not clear what is "non-academic factor"?
 Is it skills? (Communication)
 - Is it personality (conscientiousness)
 - Is it attitudes (motivation, altruism)

#